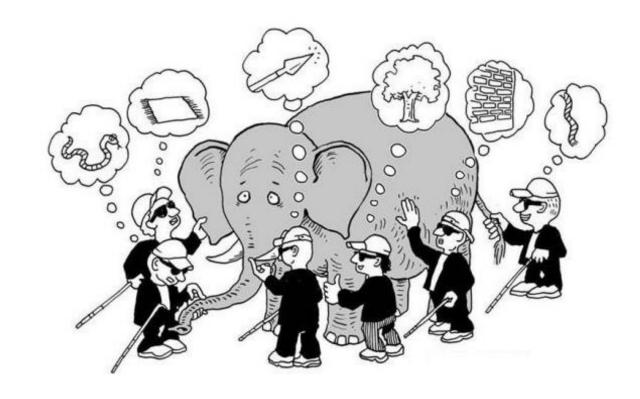


ИНСТРУМЕНТАЛЬНЫЕ ОСНОВЫ СИСТЕМНОЙ БИОЛОГИИ 13-17 ноября 2023

www.sysbiomed.ru

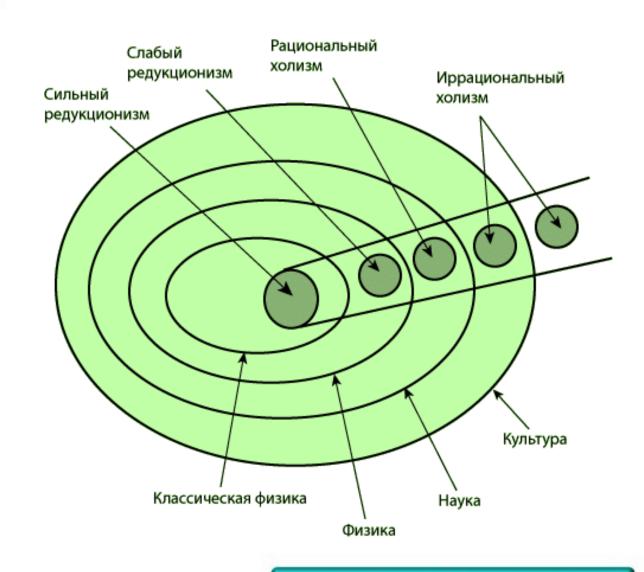
ВВЕДЕНИЕ В СИСТЕМНУЮ И СИНТЕТИЧЕСКУЮ БИОЛОГИЮ. «РЕДУКЦИОНИЗМ» И «ХОЛИЗМ» В БИОЛОГИИ XIX-XXI ВЕКА.


«Иль вот: живой предмет желая изучить, Чтоб ясное о нём познанье получить, Учёный прежде душу изгоняет, Затем предмет на части расчленяет И видит их, да жаль: духовная их связь Тем временем исчезла, унеслась!» И.В. Гете «Фауст»

В.М. Говорун д.б.н., профессор, академик РАН

РЕДУКЦИОНИЗМ vs ХОЛИЗМ

- **РЕДУКЦИОНИЗМ** (от лат. *reductio* уменьшение) объясняет сложные явления с помощью законов, свойственных более простым явлениям. Разбивает целое на мелкие части и рассматривает их по отдельности. То есть сводит сложное к более простому и обозримому, к тому, что проще проанализировать.
- **ХОЛИЗМ** (от лат. holos цельность) принцип целостности. Согласно этому принципу, все элементы нашего мира являются частями единой системы и не могут быть объяснены по свойствам отдельных частей. Холизм не сосредотачивается на каждом элементе изолированно, а рассматривает, как все элементы работают вместе.


Главная проблема определения жизни — проблема поиска критерия жизни, т.е. рационального смысла, необходимого и достаточного для выражения интуиции жизни.

ПРЕДСТАВЛЕНИЯ О ФЕНОМЕНЕ ЖИЗНИ СО СТОРОНЫ ВСЕХ РАЗНОВИДНОСТЕЙ РЕДУКЦИОНИЗМА И ХОЛИЗМА (по В.И. Моисееву)

- сильный редукционизм феномен жизни лежит внутри области классической физики
- **СЛАБЫЙ РЕДУКЦИОНИЗМ** феномен жизни выходит за границы классической физики, но принадлежит физике вообще
- **РАЦИОНАЛЬНЫЙ ХОЛИЗМ** феномен жизни выходит за границы физики вообще, но принадлежит научному знанию
- **ИРРАЦИОНАЛЬНЫЙ ХОЛИЗМ** феномен жизни выходит как за границы науки, так и всего того, что может быть познано и создано человеком (культуры).

РЕДУКЦИЯ ИЛИ/И ПОИСК СТРУКТУРЫ. ДВЕ СТРАТЕГИИ ЕДИНОЙ НАУКИ

Что наблюдается?

МЕТОД РЕДУКЦИИ

Пример. И.М. Сеченов сводит все поведенческие акты (кроме блеска глаз) к мышечным движениям. После редукции исследование поведения получило конкретные цели и методы.

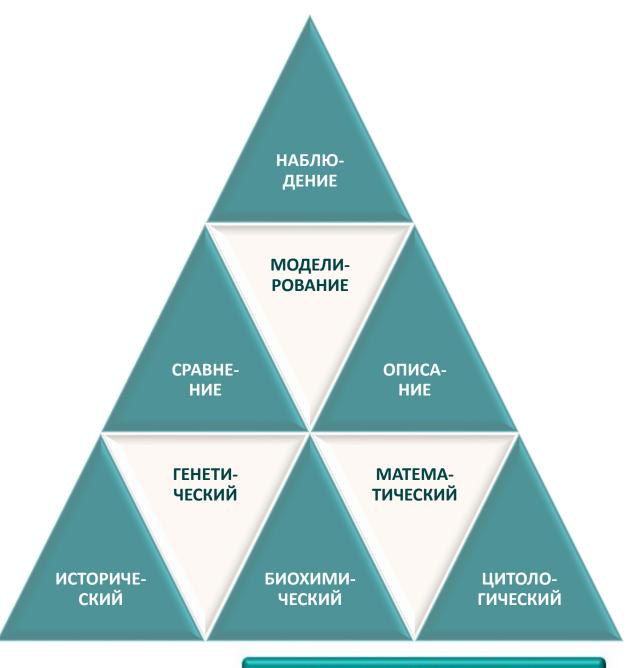
"Углубление" в объект исследования

Какой в этом смысл?

СИСТЕМНАЯ МЕТОДОЛОГИЯ. ВЫЯВЛЕНИЕ СТРУКТУРЫ ЯВЛЕНИЯ

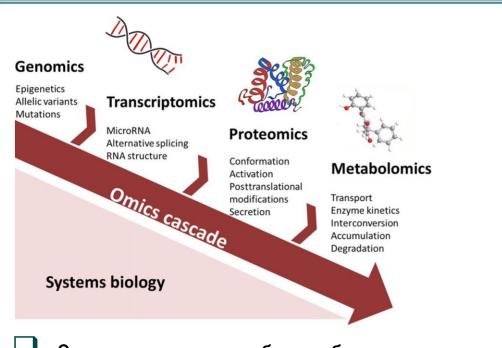
Пример. Рудольф Вирхов. В конце 1850-х годов выдвинул концепцию клеточного государства. Понять активности каждой из клеток, предположив разделение труда и общую цель выживания всех клеток - жизнь организма.

Поиск взаимосвязей и аналогий



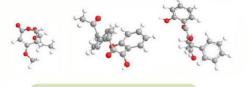
МЕТОДЫ БИОЛОГИЧЕСКОЙ НАУКИ

Метод – способ теоретического исследования или практического осуществления чего-нибудь.


«Наблюдение собирает то, что ему предлагает природа, опыт же берет у природы то, что он хочет».

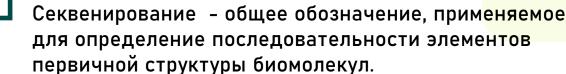
И.П. Павлов

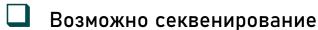
«ОМИКСНЫЕ» ПОДХОДЫ СИСТЕМНОЙ БИОЛОГИИ


Genomics/transcriptomics

- PCR
- qPCR
- Microarrays
- · Next-generation sequencing

Proteomics


- 2D-electrophoresis
 - 2D-DIGE
- Mass spectrometry
 - Bottom-up
 - Sort-then-break
 - Break-then-sort
 - Top-down
 - Chemical isotope labelling ICAT, SILAC, ITRAQ
 - DIA, SWATH-MS
- · Protein microarrays



Metabolomics

- NMR
 - ¹H NMR, ¹³C NMR, ³¹P NMR
 - 2D NMR: COSY, TOCSY, NOESY
- · Separation methods: LC, GC, CE
- Mass spectrometry
 - Ionization methods: ESI, EI, APCI, APPI
 - Mass analysers
 - Single MS: Q, LIT, QIT, TOF, FTICR, Orbitrap
 - Tandem MS/MS: QTrap, TQ, Q-TOF, LTQ-Orbitrap
 - DIA, SWATH-MS

Carmen Bedia, Chapter Two - Experimental Approaches in Omic Sciences, Comprehensive Analytical Chemistry (2018)

- нуклеиновых кислот (ДНК, РНК...)
- белков (антител...)
- полисахаридов

Применяется преимущественно в отношении неразветвлённых биомолекул.

СИНТЕТИЧЕСКАЯ БИОЛОГИЯ

СИНТЕТИЧЕСКАЯ БИОЛОГИЯ – научное направление в биологии,

занимающееся проектированием и созданием биологических систем с заданными свойствами и функциями, в том числе и не имеющих аналогов в природе.

1970-е

Ученые начали использовать эту технологию для создания первых искусственных организмов.

1980

Барбара Хобом использовала термин «синтетическая биология», сообщая о трансгенной бактерии, полученной с помощью технологии рекомбинантной ДНК.

1980-е

Созданы первые бактерии, содержащие плазмиды, которые могли передавать гены между разными организмами.

1990-е

Ученые начали использовать технологии генной инженерии для создания более сложных организмов, таких как растения и животные. Создание синтетических аналогов геномной одноцепочечной вирусной РНК (К. Концельманн и М. Шнель).

2000-е

Созданы первые микроорганизмы, способные производить лекарства и другие вещества, необходимые для производства биотоплива и других экологически чистых продуктов.

2010

В Институте Крейга Вентера создана первая бактерия с полностью синтетическим геномом, которая получила название Mycoplasma mycoides JCVI-syn 1.0.

МИКОПЛАЗМЫ – ОБЪЕКТ ДЛЯ СИСТЕМНОЙ БИОЛОГИИ

1898 Первое сообщение о культивировании микоплазмы (Mycoplasma pleuropneumonia), возбудителя плевропневмонии крупного рогатого скота

1950-60 Публикуется большое количество статей, поддерживающих или опровергающих определение микоплазм как бактериальных L-форм.

1960 Первые данные геномного анализа, полученные с помощью гибридизации ДНК, исключили какое-либо родство микоплазм со стабильными L-формами

Достижения 1960-х и 1970-х гг. – накопление знаний об ультраструктуре, клеточной мембране, геноме и метаболических путях микоплазм привели к признанию того, что микоплазмы являются самыми маленькими и простыми самовоспроизводящимися организмами.

1989 Jack Maniloff

Подан первый грант на определение нуклеотидной последовательности микоплазмы как минимальной клетки.

Заявление было отклонено как неисполнимое.

1995 Fraser CM et al

Минимальный набор генов Mycoplasma genitalium

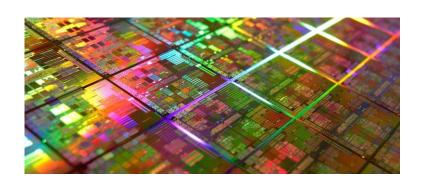
1995 Wilkins et al

Первый протеомный проект и термин «протеом», «протеогеномика» для Mycoplasma genitalium

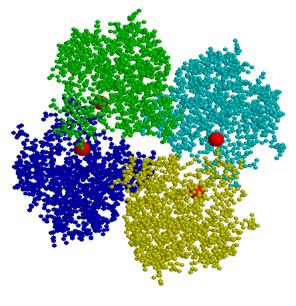
2009

Mycoplasma pneumoniae – второй тракскриптом бактерии

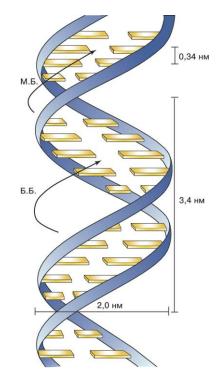
Некоторые из основоположников микоплазмологии на Международном конгрессе микоплазмологов в Бордо в 1974 году. Слева направо: Джо Талли (США), Алан Родвелл (Австралия), Вольфганг Бредт (Германия), Деррик Эдвард (Великобритания), Эйвинд Фройндт (Дания), Шмуэль Разин (Израиль).


2016

Mycoplasma mycoides JCVIsyn1.0 – первый организм с синтетическим геномом



ВЫЗОВЫ СИНТЕТИЧЕСКОЙ БИОЛОГИИ


БИОГЕННЫЕ *vs* ИСКУССТВЕННЫЕ СТРУКТУРЫ

- «Вертикальные транспортные полевые транзисторы» (VTFET).
- Преодоление предела в 1 н.м. заявлено SAMSUNG и IBM в 2021 году.

Белок YBEY *E. coli* может быть вписан в куб размером 64,8 нм^{3.}

ДНК ~ 2 нм

С точки зрения энергоэффективности КПД растущих живых систем может достигать 60-70%

В одном грамме ДНК может храниться до 455 млрд Гб данных

